第2回 スー1★ GP

模範解答

主催:北九州市教育委員会

問題1(配点2点)

$\begin{vmatrix} 3 & \times & 3 & \times & 3 & \times & 3 & \times & 5 & \times & 13 \end{vmatrix}$		3	×	3	×	3	×	3	×	5	×	13
---	--	---	---	---	---	---	---	---	---	---	---	----

※順番は問わない

問題2(配点2点)

問題3 (配点1+2点)

$$(1)$$
 2025 (2) 1000

問題4(配点2点)

問題5(配点2点)

$$x = \begin{bmatrix} -\frac{13}{3} \\ \end{bmatrix}, y = \begin{bmatrix} \frac{11}{3} \\ \end{bmatrix}$$

問題6(配点2点)

$$2025/\boxed{9} / \boxed{25} = \boxed{9}$$

問題7(配点2点)

第2回 スー1★ GP

模範解答

主催:北九州市教育委員会

問題8(配点3点)

$$\frac{1}{1} + \frac{1}{3} = \frac{1}{10}$$

※ 14 と 35 が逆でもよい

問題9(配点3点)

問題10(配点3点)

問題11(配点3点)

問題12(配点3点)

216	cm^3
-----	--------

問題13(配点4点)

※積が最小になる解答の例

1	6	20	8	3	5
12	5	2	1	20	6
10	4	3	15	2	4

第2回 スー1★ GP

模範解答

主催:北九州市教育委員会

問題14(配点4点)

(解1)

GH, GI と BC の交点をそれぞれ P, Q とし、その中点を M とする. PQ = t とおく. 三角形 GPQ は正三角形であるから GQ = t であり, GQ と EC は平行なので, DQ: DC = GQ: EC = t: 1 である. これと DC = 3 より DQ = 3t,よって CM = CD - DQ + QM = $3 - 3t + \frac{1}{2}t = 3 - \frac{5}{2}t$ が成り立つ. 一方, M は BC の中点でもあるから CM = 2 であり, $2 = 3 - \frac{5}{2}t$ より $t = \frac{2}{5}$ が得られる. これより, CP = CM + MP = $2 + \frac{1}{2}t = \frac{11}{5}$ である.

GH と AC の交点を R とおくと,HR = GP = $\frac{2}{5}$,PR = PC = $\frac{11}{5}$ であるから,GH = PR – HR – GP = $\frac{11}{5}$ – $\frac{2}{5}$ – $\frac{2}{5}$ = $\frac{7}{5}$ であり,これが求める長さである.

(解2)

CE と GI は平行なので、 ∠CED = ∠EGI である. これより

$$\angle CDE = 180^{\circ} - \angle DCE - \angle CED = 180^{\circ} - 60^{\circ} - \angle EGI$$

= $120^{\circ} - (\angle EGH + \angle HGI) = 60^{\circ} - \angle HGI$

であり、 \angle CDE と \angle HGI の和は 60° である.これと \angle ECD = \angle HEG = 60° より、三角形 GHE を相似拡大して三角形 CDE とつなげると一辺の長さが 3 の正三角形になることが分かる.このとき,GE は正三角形の一辺に対応し,HE は正三角形の一辺から CE を引いたものに対応するので GE : HE = 3:2, これより DG : GE = 2:3 が分かる.

三角形 AFE, BDF, CED の面積は三角形 ABC の $\frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$ 倍であるから,三角形 DEF の面積は三角形 ABC の $1-3 \times \frac{3}{16} = \frac{7}{16}$ 倍である.同様に,三角形 DGI, EHG, FIH の面積は三角形 DEF の $\frac{2}{5} \times \frac{3}{5} = \frac{6}{25}$ 倍であるから,三角形 GHI の面積は三角形 DEF の $1-3 \times \frac{6}{25} = \frac{7}{25}$ 倍である.

したがって,三角形 GHI の面積は三角形 ABC の $\frac{7}{16} \times \frac{7}{25} = \left(\frac{7}{20}\right)^2$ 倍であるから,三角形 ABC と GHI の相似比は $1:\frac{7}{20}$ であり,これより三角形 GHI の一辺の長さは $4 \times \frac{7}{20} = \frac{7}{5}$ である.

答: $\frac{7}{5}$ cm

第 2 回 スー1★ GP

模範解答

主催:北九州市教育委員会

問題15(配点4点)

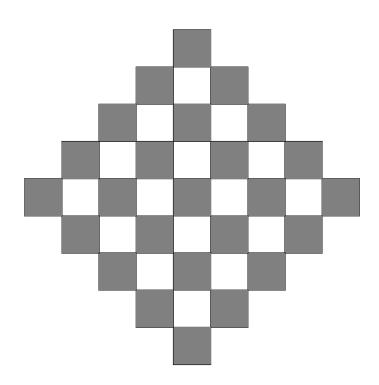
(解1)

もとのチョコレートの形は、36角形であり、どの内角も 90° か 270° である。チョコレートを長方形に分割する場合、この36角形の頂点はすべて、いずれかの長方形の頂点になっている必要がある。8 個以下の長方形の頂点は全部で $4\times8=32$ 個以下なので、8 個以下の長方形に分割するのは不可能である。

(解2)

一番上のマスが黒になるように各マスを白黒で交互に塗ると、黒マスの方が9個多くなる.一方、マスにそった長方形の各マスを白黒で交互に塗ると、縦・横いずれかが偶数マスの場合は黒マスと白マスは同数になり、縦・横がともに奇数マスの場合は黒マスと白マスいずれかが1個だけ多くなる.

よって,もしチョコレートを8個以下の長方形に分割できたとすると,黒マスと白マスの個数の差は最大でも8個になり矛盾する.したがって,8個以下の長方形に分割するのは不可能である.



(解3)

図の A, B, C, D, E と書かれたマスに着目する.異なる文字は同じ長方形に含めることができない.同じ文字は2 個または4 個あるが,これを1つの長方形に含める場合,かならず中央のマス X を含むことになるので,A, B, C, D, E の5 種の文字のうちそれができるのは1 種の文字だけである.よって,分割後の長方形は, $1+2\times 4=9$ 個以上必要であり,8 個以下の長方形に分割するのは不可能である.

