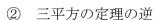
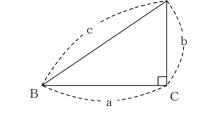
チャレンジシート① 学ぶ

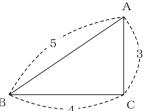
学習日 年 月 日


単 元	左	年 組	番
3年「三平方の定理」	氏名		

三平方の定理

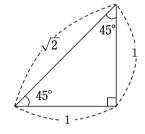
① 三平方の定理


直角三角形の直角をはさむ2辺の長さをa、b、斜辺の長さをcとすると、

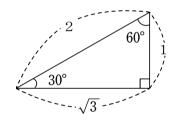

$$a^2 + b^2 = c^2$$

三角形ABCで、

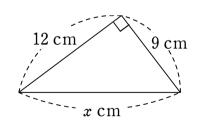
BC=a、CA=b、AB=cとするとき、 $a^2+b^2=c^2$ ならば、 $\angle C=90^\circ$ (cを斜辺とする直角三角形である)



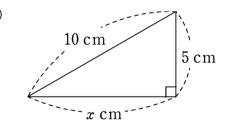
 $3^2+4^2=25$ $5^2=25$ だから、直角三角形


- ③ 特別な直角三角形の辺の比
 - (1) 直角二等辺三角形

 $1:1:\sqrt{2}$


② 60°の角をもつ直角三角形

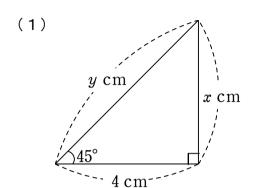
 $1:2:\sqrt{3}$

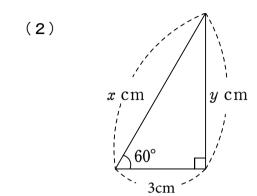


(練習) 次の図で、χの値を求めなさい。

(1)

(2)

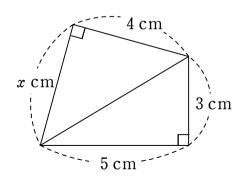



チャレンジシート② 基本

学習日 年 月 日

単 元	年	組	番	
3年「三平方の定理」	氏名			4 88
				4問

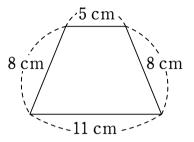
1 次の直角三角形において、 χ 、 γ の値を求めなさい。


$\chi =$, y=	

$\chi =$	`	y =

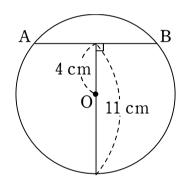
- 2 3つの辺の長さが次のような三角形がある。この中から直角三角形をすべて選びなさい。
 - (\mathcal{T}) $2\,cm$, $\,3\,cm$, $\,4\,cm$
 - (\checkmark) $3\,cm$, $4\,cm$, $5\,cm$
 - (ウ) $1\,\mathrm{cm}$, $\sqrt{2}\,\mathrm{cm}$, $\sqrt{3}\,\mathrm{cm}$
 - (II) $\sqrt{2}$ cm , $\sqrt{3}$ cm , $2\,\text{cm}$

3 次の図で、 χ の値を求めなさい。

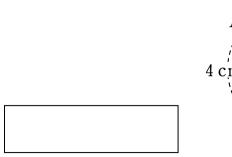

チャレンジシート③ ジャンプ

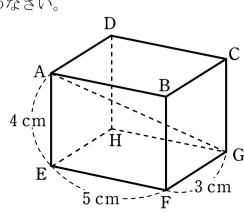
学習日 年 月 日

単 元	年	組	番	
3年「三平方の定理」	氏名			2問


1 右の図の台形の面積を求めなさい。

2 右の図の円Oで、弦ABの長さを求めなさい。





3 2点A(-2, 3), (1, -6)間の距離を求めなさい。

4 右の図の直方体において、対角線AGの長さを求めなさい。

