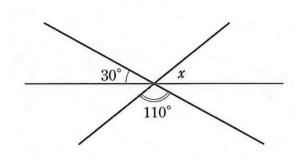
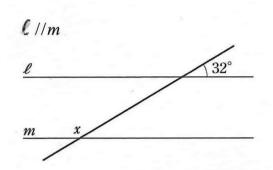
チャレンジシート② 基本


学習日 年 月 日


単 元	年	組	番	
2年「図形の調べ方」	氏名			6問

1 次の図で、 $\angle x$ の大きさを求めなさい。 (1)

(1

(2)

 $180^{\circ} - (30^{\circ} + 110^{\circ})$

$$=180^{\circ}-140^{\circ}$$

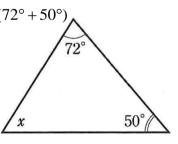
 $=40^{\circ}$

 40°

 $180^{\circ} - 32^{\circ}$

=148°

1 4 8°


2 次の図で、 Zxの大きさを求めなさい。

(1)

 $\angle \chi = 180^{\circ} - (72^{\circ} + 50^{\circ})$

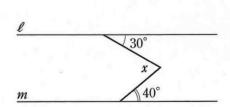
 $=180^{\circ}-122^{\circ}$

= 58°

(2)

 $\angle \chi = 55^{\circ} + 70^{\circ}$

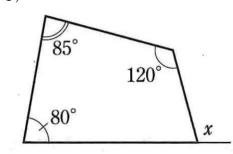
 $= 125^{\circ}$


55° x

58°

 $1~2~5^{\circ}$

(3)


@//m

 $\angle x = 30^{\circ} + 40^{\circ} = 70^{\circ}$

 70°

(4)

 $=360^{\circ}-255^{\circ}$

= 105 °

 $1~0~5^{\circ}$

チャレンジシート③ ジャンプ

学習日 年 月 日

単 元	年	組	番	
2年「図形の調べ方」	氏名			7問

- 1 次の問いに答えなさい。
 - (1) 六角形の内角の和を求めなさい。

$$180^{\circ} \times (6-2) = 180^{\circ} \times 4 = 720^{\circ}$$

(2) 正六角形の1つの内角の大きさを求めなさい。

$$720^{\circ} \div 6 = 120^{\circ}$$

 $1~2~0^{\circ}$

 720°

(3) 内角の和が 2520° となる多角形は何角形ですか。

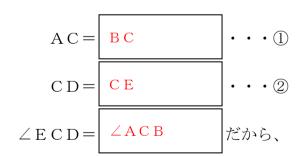
$$180^{\circ} \times (n-2) = 2520$$

 $n-2 = 14$
 $n = 16$

16角形

Е

 \mathbf{C}


Α

В

2 右の図で、 $\triangle ABC$ 、 $\triangle CDE$ は正三角形である。 $\triangle ACD \equiv \triangle BCE$ であることを、次のように証明 した。

にあてはまるものを入れなさい。

(証明) $\triangle ACD \\ \\ \\ \\ \triangle BCC$ $\otimes CDE$ は正三角形だから、

 $\angle ACD = \angle BCE$ · · · ③

がそれぞれ等しいので

 $\triangle ACD \equiv \triangle BCE$